• Users Online: 2958
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 98-102

Evaluation and comparison of mechanical properties between commercially available mini-implants: An in vitro study


1 Department of Orthodontics and Dentofacial Orthopedics, Yogita Dental College, Khed, Ratnagiri, Maharashtra, India
2 1Department of Orthodontics and Dentofacial Orthopedics, Babu Banarsi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India
3 Department of Orthodontics and Dentofacial Orthopedics, Terna Dental College, Navi Mumbai, Maharashtra, India
4 Consulting Orthodontist, Private Practice, New Delhi, India

Correspondence Address:
Dr. Rohit Kulshrestha
Department of Orthodontics and Dentofacial Orthopedics, Terna Dental College, Navi Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijor.ijor_18_21

Rights and Permissions

Objective: The objective of this study is to evaluate the mechanical properties of different commercial brands of mini-implants by subjecting them to loads perpendicular to their long axis. Materials and Methods: A total of 120 mini-implants were divided into six groups (n = 20): Group 1A - 20 stainless steel (SS) mini-implants (SK Orthodontics, India), Group 1B - 20 SS mini-implants (BK Orthodontics, India), Group 1C - 20 SS mini-implants (JSV Surgicals, India), Group 2A - 20 titanium mini-implants (Koden surgical, India), Group 2B - 20 Titanium mini-implants (JSV Orthodontics, India), and Group 2C - 20 titanium mini-implants (Dentos, Korea) were used. The mini-implants were placed perpendicularly into 12 acrylic blocks and were submitted to mechanical tests using a standard universal testing machine (ACME, India. Model no. UNIT TEST-10). The different forces required to fracture mini-implants after undergoing 0.5, 1, 1.5, and 2 mm deformation was assessed. Results: Mini-implants in Group 2C (Titanium Dentos Korea) required the greatest force to deform and fracture, whereas Group 1C (JSV Surgicals, India) had the lowest fracture force. Statistically significant differences were seen when an intragroup comparison was done. Statistically significant differences were seen in the comparison between the SS and titanium groups (P < 0.05). The SS group required lower forces to deform and fracture as compared to the titanium group. Conclusions: SS mini-implants exhibited a high degree of resistance to deform and fracture, but they were inferior compared with titanium mini-implants. Titanium mini-implants required higher force values to deform and fracture.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2800    
    Printed254    
    Emailed0    
    PDF Downloaded244    
    Comments [Add]    

Recommend this journal